DEGREE AND LOCAL CONNECTIVITY IN DIGRAPHS

W. MADER

Received 13 April 1984

It is shown that there is a digraph D of minimum outdegree 12m and $\max_{\substack{x \neq y \ \mu(x,y;D) = 11m,\ }} \mu(x,y;D) = 11m$, but every digraph D of minimum outdegree n contains vertices $x \neq y$ with $\lambda(x,y;D) \geq n-1$, where $\mu(x,y;D)$ and $\lambda(x,y;D)$ denote the maximum number of openly disjoint and edge-disjoint paths, respectively.

In [7] it was shown that every finite (non-trivial) graph G contains vertices $x \neq y$ such that $\mu(x, y; G) = \min \{e(x; G), e(y; G)\}$, where e(x; G) denotes the degree of the vertex x in G and $\mu(x, y; G)$ is the maximum number of openly disjoint paths joining x and y in G. Especially, if every vertex has degree at least n, then there are vertices x and y connected by n openly disjoint paths. In the present paper we study an analogous question for directed graphs: If every vertex x of a finite directed graph or multigraph D has outdegree $e^+(x; D) = n$, what can one say about $\max \mu(x, y; D)$ and $\max \lambda(x, y; D)$, where $\mu(x, y; D)$ and $\lambda(x, y; D)$ are the maximum number of openly disjoint (continuously directed) paths and edge-disjoint paths from x to y in D, respectively. As expected, these problems are more difficult than in the undirected case. For $\max \mu(x, y; D)$, we can only show that for every positive number m there is a finite digraph D with $e^+(x; D) \ge$ $\geq 12m$ for every vertex x, but max $\mu(x, y; D) = 11m$. I do not even know if $\max \mu(x, y; D)$ increases with $\min e^+(x; D)$. For finite directed multigraphs D, always $\max \lambda(x, y; D) > \min e^+(x; D)/2$, whereas for every positive integer n, are finite directed multigraphs D such that $\min e^+(x; D) = n$ $\max \lambda(x, y; D) = [2n/3] + 1$. If D does not have parallel edges, then we can prove $\max \lambda(x, y; D) \ge \min e^+(x; D) - 1$, but I could not settle if even $\max \lambda(x, y; D) \ge$ $\geq \min e^+(x; D)$ is valid.

First let us state some concepts and notations. All graphs and multigraphs considered here are supposed to be finite without loops. A directed multigraph may have parallel edges of the same direction, but a digraph does not. The vertex set and the edge set of D are denoted by V(D) and E(D), respectively; furthermore, |D| := |V(D)|. The set of edges from x to y is denoted by (x, y) and if there is only

162 W. MADER

one, we identify (x, y) with this edge; in the undirected case we write [x, y] for an edge. For $k \in (x, y)$, $V(k) := \{x, y\}$. For $A, B \subseteq V(D)$, let D(A) be the subgraph spanned by $A, E(A, B; D) := \bigcup \{(a, b) : a \in A, b \in B\}, E^+(A; D) := E(A, V(D) - A; D), E^-(A; D) := E^+(V(D) - A; D), \text{ and } e^*(\ldots) := |E^*(\ldots)| \text{ for } *= , +, -. \text{ (In these notations we write a instead of } \{a\}.) For <math>a \in V(D)$, $N^+(a; D) := \{x \in V(D - a) : (a, x) \neq \emptyset\}$ and for $A \subseteq V(G)$ in a graph $G, N(A; G) := \{x \in V(G) - A : \exists_{a \in A} [a, x] \in E(G)\}$. We call a directed multigraph D outregular of degree n, if $e^+(x; D) = n$ for all $x \in V(D)$ and we define $\delta_n^+(A; D) := \sum_{a \in A} \max (0, n - e^+(a; D))$ for $A \subseteq V(D)$ and $\delta_n^+(D) := \delta_n^+(V(D); D)$; "inregular" and $\delta_n^-(D)$ are defined analogously. In a directed multigraph, the terms "path" and "circuit" always mean continuously directed path and circuit, and an x, y-path is a path from x to y. A digraph consisting of n vertices and n(n-1) edges is denoted by \overline{K}_n .

Let us first construct a digraph D which is outregular of degree n, but has $\max \mu(x,y;D) < n$. For n=12m and any positive integer $d \le m$ let D_0 be a digraph with $|D_0| = n$ which is outregular and inregular of degree n-d and contains 6m edges $k_1 = (x_1, y_1), \ldots, k_{n/2} = (x_{n/2}, y_{n/2})$ with $\{x_i, y_i\} \cap \{x_j, y_j\} = \emptyset$ for $i \ne j$. (For instance, delete from K_n (d-1) edge-disjoint hamiltonian circuits such that the remaining digraph has a "1-factor".) Delete the edges k_1, \ldots, k_{6m} and add a new vertex z_0 and the edges (x_i, z_0) and (z_0, y_i) for $i=1, \ldots, 6m$. Add 3d further vertices z_1, \ldots, z_{3d} and edges from $V(D_0)$ to z_1, \ldots, z_{3d} in such a way that we get a digraph $\overline{D_0}$ with $e^-(z_i; \overline{D_0}) = 4m$ for $i=1, \ldots, 3d$ and $e^+(x; \overline{D_0}) = n$ for all $x \in V(D_0)$. If we perform this procedure with the same vertices z_0, z_1, \ldots, z_{3d} and 2(3d+1) disjoint copies $D_0, D_1, \ldots, D_{6d+1}$ of D_0 6d+2 times altogether in such a way that every vertex z_i plays the same role as z_0 above exactly twice, we get a digraph D outregular of degree n, where $e^-(x;D) = n-d$ for all $x \in \bigcup_{i=0}^{6d+1} V(D_i)$ and $e^-(z_i;D) > n$ for $i=0,1,\ldots,3d$. It is easy to see that D has the desired property $\max \mu(x,y;D) = n-d < n = \min e^+(x;D)$.

In a similar manner it is possible to give an example of a digraph D with $\delta_n^+(D) = \delta_n^-(D) = 0$, but $\max \mu(x,y;D) < n$. To this, we consider the digraph D constructed above for $n=12m^2$ and d=m. May \overline{D} arise from D by adding (6m+2)m further vertices $a_i(i=0,1,\ldots,6m^2+2m-1)$ and $10m^2$ edges from a_i to $D_{\lfloor i/m\rfloor}$ and $2m^2$ edges from a_i to $D_{\lfloor i/m\rfloor+1}$ (the indices of the Ds modulo 6m+2) in such a way that $e^-(x;\overline{D})=n$ for all $x\in\bigcup_{i=0}^{6m+1}V(D_i)$. Taking a (disjoint) dual digraph \overline{D}' of \overline{D} , where the vertex a_i' may correspond to a_i , and identifying a_i with a_i' for $i=0,\ldots,6m^2+2m-1$, we get a digraph H with $\delta_n^+(H)=\delta_n^-(H)=0$, but $\max \mu(x,y;H)=n-m$.

It was proved in [5] and [6] that for given n, there is an m such that every (undirected, finite) graph of minimum degree m contains an n-connected subgraph and a subdivision of the complete graph K_n . The corresponding statements for digraphs do not hold, as the example below shows. It was conjectured by Y. O. Hamidoune in [3], that every digraph D with $\delta_n^+(D) = \delta_n^-(D) = 0$ contains an edge (x, y) such that $\mu(y, x; D) \ge n$. This conjecture was disproved by C. Thomassen in [9]. Modifying his counterexample, we shall show now that for every n there is a finite digraph D with $\delta_n^+(D) = \delta_n^-(D) = 0$ and with the property that $\mu(x, y; D) \le n$

 ≤ 1 or $\mu(y, x; D) \leq 1$ for all vertices $x \neq y$ in D. (But it is easily shown that every directed multigraph D with $\delta_2^+(D) \leq 1$ contains vertices $x \neq y$ which are connected by 3 openly disjoint paths, two x, y-path and one y, x-path.)

Let n be given and let D be a finite digraph satisfying the following conditions:

- (1) $(x, y) \in E(D) \rightarrow (y, x) \notin E(D)$ (and, at pleasure, in addition $\mu(y, x; D) \leq 2$);
- (2) $(x, y) \in E(D) \land \mu(y, x; D) \ge 2 \rightarrow e^+(x; D) \ge n;$
- (3) If C_1 and C_2 are circuits in D with $V(C_1) \cap V(C_2) = \{x\}$, then $e^+(x; D) \ge n$;
- (4) $\mu(x, y; D) \ge 2 \rightarrow \mu(y, x; D) \le 1$.

If $m:=\min\{e^+(x; D): x\in V(D)\}< n$, we shall construct a digraph D' with $\min\{e^+(x; D'): x\in V(D')\}\ge \min\{e^+(x; D): x\in V(D)\}$ which meets also the conditions (1) to (4) and the number of vertices with outdegree m in D' is smaller than the number of such vertices in D. Let us suppose m < n and let x_0 be a vertex of D with $e^+(x_0; D)=m$. The digraph L may consist of a path y_0, y_1, \ldots, y_n of length n added the n-1 edges $(y_0, y_2), \ldots, (y_0, y_n)$ and n-m circuits C_1, \ldots, C_{n-m} of length ≥ 3 such that $V(C_i) \cap V(C_j) = \{y_n\}$ for all $i \ne j$ and $V(C_i) \cap \{y_0, \ldots, y_{n-1}\} = \emptyset$ for all i. We assume $V(L) \cap V(D) = \emptyset$. The digraph D' may arrise from $D \cup L$ by adding the edge (x_0, y_0) and all the edges from $V(L-y_0)$ to $N^+(x_0; D)$. There is no difficulty to check that also D' has the four properties (1) to (4). As $e^+(x; D') > m$ for all $x \in V(L)$, by successive application of this construction, in a finite number of steps we can get a digraph \overline{D} with $\delta_n^+(\overline{D}) = 0$ and $\mu(x, y; \overline{D}) \le 1$ or $\mu(y, x; \overline{D}) \le 1$ for all vertices $x \ne y$. Taking a (disjoint) dual \overline{D}' of \overline{D} and adding all the edges from \overline{D}' to \overline{D} to the digraph $\overline{D}' \cup \overline{D}$, we get a digraph with the asserted properties. (It is also obvious, that a digraph D with $\delta_n^+(D) = \delta_n^-(D) = 0$ does not necessarily contain a 2-edge-connected subgraph.)

The following problem remains: Given any positive integer n, is there an m such that every finite digraph D outregular of degree m contains a subdivision of the acyclic tournament of order n. Of course, this would imply that existence of vertices $x \neq y$ with $\mu(x, y; D) \ge n-1$.

Whereas we have found only negative results for the connection of the function μ with the minimum outdegree of a digraph, we can give some positive ones for λ .

Theorem 1. Let D be a finite directed multigraph with $\delta_n^+(D) < n$ for a positive integer n. Then there are vertices $x \neq y$ and n+1 edge-disjoint paths P_1, \ldots, P_{n+1} in D such that P_i is an x, y-path or a y, x-path for $i = 1, \ldots, n+1$.

Proof. We use induction on the number of vertices. $\delta_n(D) < n$ implies $|D| \ge 2$. We may assume $e^+(x; D) \le n$ for all $x \in V(D)$. There is a vertex z with $e^-(z; D) \le e^+(z; D)$; set $d:=n-e^+(z; D) \ge 0$. We define a bipartite graph G by $V(G):=E^-(z; D) \cup E^+(z; D)$ and $k, k' \in V(G)$ adjacent iff $\{k, k'\} \cap E^-(z; D) \ne \emptyset$, $\{k, k'\} \cap E^+(z; D) \ne \emptyset$, and $V(k) \ne V(k')$. Let us first suppose that there is a matching M in G with $|M| \ge e^-(z; D) - d$, say, $M = \{[k_i, k_i']: i = 1, ..., m\}$ with $k_i \in (x_i, z)$ and $k_i' \in (z, y_i)$. Let D' arise from D - z by adding a new edge k_i from x_i to y_i for every i = 1, ..., m. Then D' has no loops and $\delta_n^+(D') \le \delta_n^+(D) < n$. By induction, there are vertices $x \ne y$ and n+1 edge-disjoint paths joining x and y in D'. Substituting k_i and k_i' for k_i , these paths also deliver n+1 edge-disjoint paths joining x and y in x in x in x and x in x i

164 W. MADER

 $A \subseteq E^-(z; D)$ with |A| > |N(A; G)| + d. If $A \subseteq (x, z)$ for all $x \in V(D-z)$, then $N(A; G) = E^+(z; D)$, which implies the contradiction $e^-(z; D) \ge |A| > e^+(z; D)$. Hence, there is an $x_0 \in V(D-z)$ such that $A \subseteq (x_0, z)$. But then there are n+1 edge-disjoint paths connecting x_0 and z in D, because $|(x_0, z)| + |(z, x_0)| > |N(A; G)| + |(z, x_0)| = e^+(z; D) + d = n$.

Corollary. Every finite directed multigraph D with $\delta_n^+(D) < n$ contains vertices $x \neq y$ such that $\lambda(x, y; D) \ge \lfloor n/2 \rfloor + 1$.

Simple examples show that this Corollary is best possible. But in a directed multigraph D with $\delta_n^+(D)=0$, there are vertices $x\neq y$ such that $\lambda(x,y;D)\geq \lfloor n/2\rfloor+2$, for n=3 and all $n\geq 5$ (whereas Theorem 1 remains sharp also for $\delta_n^+(D)=0$). On the other hand, for every n, there are directed multigraphs D such that $\delta_n^+(D)=0$ and max $\{\lambda(x,y;D):x\neq y\}=\lfloor 2n/3\rfloor+1$. To see this, consider the directed multigraph D' displaced in figure 1. If we stick together n copies of D' at z, we get a directed multigraph D as wanted. By the way, in a directed multigraph D with $e^+(x;D)=e^-(x;D)$ for all $x\in V(D)$, there are $x\neq y$ such that $\lambda(x,y;D)=\min\{e^+(x;D),e^-(y;D)\}$. This follows, for instance, from the generalization of the algorithm of Gomory and Hu for the flow function of a graph, given by R. P. Gupta in [1].

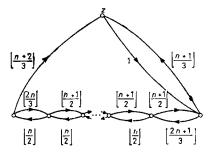


Fig. 1

If we forbid multiple edges, we can prove a result more precise.

Theorem 2. Let D be a finite digraph with $\delta_n^+(D) < 2(n-1)$ and |D| > 1. Then there are vertices $x \neq y$ in D such that $\lambda(x, y; D) \ge n-1$.

Proof. $\delta_n^+(D) < 2(n-1)$ and |D| > 1 implies $n \ge 2$ and $|D| \ge n$, as easily checked. Hence, there is a vertex a in D with $e^+(a; D) \ge n-1$. We may assume $e^+(a; D) \le n$ and $\lambda(a, x; D) \le n-2$ for all $x \in V(D-a)$. By the edge-form of Menger's theorem (cf. Chap. IV, § 2 in [2]), there is a $U(x) \subseteq V(D-a)$ such that $x \in U(x)$ and $\lambda(a, x; D) = e^-(U(x); D)$. From the sets U(x), we choose a minimal cover U_1, \ldots, U_k of V(D-a). For $i=1, \ldots, k$, be $V_i := U_i - \bigcup \{U_j : j \ne i\}$. Since U_1, \ldots, U_k is a minimal cover, $V_i \ne \emptyset$ for all i. We have the following inequalities

because the edges $E^+(a; D) - \bigcup_{i=1}^k E(a, V_i; D)$ are counted twice, at least, in $\sum_{i=1}^k e(a, U_i; D)$. On the other hand, we have

(2)
$$\sum_{i=1}^{k} e^{+}(V_i; D-a) \leq \sum_{i=1}^{k} e^{-}(U_i; D-a),$$

because $E^+(V_i; D-a) \subseteq \bigcup_{j \neq i} E^-(U_j; D-a)$ and the sets V_i , hence the sets $E^+(V_i; D-a)$, are disjoint. From these inequalities (1) and (2), we get

$$\sum_{i=1}^{k} (e^{+}(V_i; D-a) - e(a, V_i; D) + \delta_n^{+}(V_i; D)) < k(n-2) - 2e^{+}(a; D) + 2(n-1)$$

$$\leq k(n-2).$$

Hence, there is an i_0 such that $e^+(V_{i_0}; D-a)-e(a, V_{i_0}; D)+\delta_n^+(V_{i_0}; D)< n-2$. For $D_0\!:=\!D(V_{i_0}\cup\{a\})$, that means $\delta_n^+(D_0)\!=\!\delta_n^+(V_{i_0}; D)+e^+(V_{i_0}; D-a)+n-e(a, V_{i_0}; D)<2(n-1)$. Hence D_0 satisfies the conditions of the theorem. As $k\!\ge\!2$, we have $|D_0|\!<\!|D|$ and, therefore, we can finish the proof by induction.

Remark. I should conjecture that a digraph D (perhaps with a few multiple edges) with $\delta_n^+(D) < n$ contains vertices $x \ne y$ such that $\lambda(x, y; D) \ge n$. Considering the decomposition used by L. Lovász in [4], it is possible to reduce such a digraph with $\max \lambda(x, y; D) < n$ by contraction, but only by generating multiple edges. But for directed multigraphs such a theorem does not hold, as we have seen above. This ist he dilemma which I could not manage.

References

- [1] R. P. Gupta, On flows in pseudosymmetric networks, J. Siam Appl. Math. 14 (1966), 215-225.
- [2] R. HALIN, Graphentheorie I, Wissenschaftliche Buchgesellschaft, Darmstadt 1980.
- [3] Y. O. HAMIDOUNE, An application of connectivity theory in graphs to factorizations of elements in groups, Europ. J. Combinatorics 2 (1981), 349—355.
- [4] L. Lovász, Connectivity in digraphs, J. Combinatorial Theory (B) 15 (1973), 174-177.
- [5] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math. Sem. Universität Hamburg 37 (1972), 86—97.
- [6] W. Mader, Hinreichende Bedingungen für die Existenz von Teilgraphen, die zu einem vollständigen Graphen homöomorph sind, Math. Nachr. 53 (1972), 145—150.
- [7] W. MADER, Grad und lokaler Zusammenhang in endlichen Graphen, Math. Ann. 205 (1973), 9-11.
- [8] L. Mirsky, Transversal theory, New York, London, Academic Press 1971.
- [9] C. THOMASSEN, Even cycles in directed graphs, to appear in European Journal of Combinatorics.

W. Mader

Institut für Mathematik Universität Hannover Welfengarten 1 D 3, Hannover 1 Germany